Понедельник, 24.07.2017, 01:42
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Главная » Статьи » Другие статьи. » Аэродинамика

Несущие крылья часть 2

Для малых скоростей

Познакомившись с основными понятиями, рассмотрим особенности аэродинамики профиля крыла при разных расчетных значениях Re.

Самыми тихоходными летающими моделями являются комнатные модели класса F1D. Скорости полета у них настолько малы, что их аэродинамика вообще не изучена. Кроме этого класса такие числа нигде больше не используются. Профиля крыла там, собственно и нет. Точнее он вырождается в тончайшую, толщиной в несколько микрон изогнутую пленку. Далее мы о таких моделях говорить не будем, – слишком уж они специфичны.

Следующими тихоходами являются свободнолетающие модели класса F1. Как известно, для этих моделей главной задачей является максимум времени парения в воздухе. Поскольку правилами ограничена минимальная нагрузка на крыло (отношение веса модели к площади его крыла), то увеличение продолжительности полета достигается за счет максимально возможного значения Су. При этом аэродинамическое качество получается отнюдь не наибольшим, но оно и не важно. Даже внутри класса F1 используются разные профили, попробуем разобраться - почему?

На свободнолетающих планерах – класс F1A используются профили с очень большой кривизной. Они позволяют летать на минимально-возможной скорости с очень большим значением Су. Часто используются профили Бенедека, слегка модифицированные. Сейчас у национальных спортсменов популярен профиль Макарова-Кочкарева – именитых московских спортсменов:


У таких профилей есть она особенность – работа на низких значениях Re. В этом случае скоростной напор невелик, и допустимый перепад давлений вдоль верхней дуги профиля – тоже. Работа на углах атаки, близких к критическому, создает угрозу к срыву обтекания и проваливанию модели. Для оптимизации обтекания применяют специальные меры. В частности, для увеличения толщины пограничного слоя (толстый пограничный слой более устойчив) используют для обтяжки крыла материал с повышенной шероховатостью. У более шероховатой поверхности силы трения о воздух больше, чем у гладкой. Это, конечно, снижает аэродинамическое качество, но позволяет использовать большие углы атаки и большее Су, что важно для увеличения продолжительности полета. Сейчас используется специальная двухслойная пленка с шероховатой поверхностью. В прошлом – микалентные длинноволокнистые сорта бумаги.

Выше уже говорилось о двух режимах обтекания – ламинарном и турбулентном. Достоинством ламинарного обтекания профиля является малое трение крыла о воздух, и как следствие – меньшее его профильное сопротивление. Но ламинарное течение в пограничном слое снижает его устойчивость к отрыву от профиля при увеличении угла атаки. Турбулентный пограничный слой отрывается позже ламинарного, при больших углах атаки и больших Су. Чтобы поднять несущие свойства профиля на крыльях планеров F1A устанавливают специальныйтурбулизатор, который создает в пограничном слое вихри и повышает его устойчивость к отрыву. Чаще всего турбулизатор представляет из себя тонкую нить, приклеенную в нескольких миллиметрах от носика профиля на верхней поверхности крыла. Чтобы он не провоцировал преждевременный срыв потока, иногда его приклеивают зигзагообразно. Профиль планеров F1A оптимизирован только под один режим полета – парение, поскольку во время затяжки леером его аэродинамические свойства играют второстепенную роль.

У резиномоторных моделей класса F1B помимо парения есть еще режим моторного полета. Поскольку скорость моторного полета невелика, на этих моделях часто используют те же профили что и на F1A. Некоторые моделисты используют профили с меньшей кривизной. Дело в том, что большое значение кривизны профиля обуславливает и значительное профильное сопротивление крыла. На моторном режиме нет потребности в высоком значении Су, и повышенное профильное сопротивление на малых углах атаки снижает скорость набора высоты.

Некоторые спортсмены в этом классе успешно используют управление пограничным слоем. Для этого в верхней обшивке крыла делаются два ряда отверстий – в районе максимального разряжения и недалеко от задней кромки крыла, где разряжение невелико:


За счет разности давлений часть воздуха через второй ряд отверстий отсасывается и подается внутри полости крыла на передний ряд, - в зону максимального разряжения. Подача дополнительного воздуха в эту зону оттягивает срыв потока на большие углы атаки, за счет чего достигается большее значение Су. Попутно отметим, что сдув и отсос пограничного слоя широко используется на больших самолетах (истребителях) при взлетно-посадочных режимах. Там, правда, совсем другие числа Re.

Особенно значима двухрежимность работы крыла на таймерных моделях класса F1C. Здесь время моторного полета жестко ограничено пятью секундами, и при равной мощности мотора, высота взлета определяется Сх крыла. Если на таймерку поставить профиль с F1A, то высота взлета уменьшится, что не компенсируется более высоким Су на этапе парения. Поэтому профиль для таймерных моделей выбирается как компромисс между малым значением Сх при нулевой подъемной силе (таймерки взлетают вертикально) и высоким значением Су.

Представляет интерес техническое решение, которое можно смело назвать бескомпромиссным. Чемпион России и Европы в классе F1C Леонид Фузеев из Саратова сделал крыло таймерки складным втрое. На этапе моторного взлета консоли крыла складываются, образуя симметричный профиль крыла в 2,5 раза меньшего размаха:


После набора высоты и остановки мотора крыло раскладывается в полный размах. По наблюдениям автора на финале последнего Чемпионата России, модель Фузеева взлетает не выше других призеров. Сказывается высокая толщина профиля сложенного крыла. Однако, на этапе парения она не оставляет надежд другим моделям, поскольку Леонид применил чисто планерный профиль Макарова-Кочкарева с большой кривизной.

Так подробно рассмотрены профили свободнолетающих моделей потому, что многолетняя история развития сформировала их весьма высокое техническое совершенство. У моделистов периодически возникает соблазн заимствовать готовые решения из класса F1 для радиоуправляемых моделей. С одним из таких решений – классическим чемпионатным планером F1A, конвертированным в радиоуправляемый для выступления в классе кроссовых планеров, автор познакомился на прошлогодних межнациональных соревнованиях самолетостроительных предприятий в Орле МАП-2003. Такую конструкцию привез молодой спортсмен из Запорожья. С точки зрения развлекательной – это интересное решение. Однако, по летным качествам для спортивных целей оно интереса не представляет. Профиль с большой кривизной хорош только для полетов модели вместе с потоком воздуха на минимальных относительных скоростях. Попытка рулить таким планером против даже слабого ветра, показала его непригодность для управляемого полета, - планер либо сносило ветром, либо он просто сыпался с высоты.

Для высоких скоростей

Летательные аппараты этой группы оптимизированы под однорежимный полет с максимальной скоростью. Из спортивных классов сюда можно отнести кордовых скоростников F2A и гоночные группы D, кордовые F2C, радио-ДВСки F3D и радио-электрички F5D. А также многочисленные экспериментальные и рекордные самолеты. Поскольку скорость полета этих самолетов очень высокая, то характер поведения Су мало кого волнует. Скоростной напор очень высок и полет проходит при малых углах атаки и малых значениях Су. Главное для профиля этих моделей, - минимально возможное значение Сх при крейсерской скорости полета. Его значение зачастую определяет лобовое сопротивление всего самолета. Такая оптимизация достигается уменьшением толщины профиля до величин, когда определяющим становится уже не аэродинамика обтекания, а строительная прочность и жесткость крыла на кручение. Применение современных высокопрочных и высокомодульных композитных материалов позволило уменьшить толщину профиля гоночных моделей до 5 – 7 %. Кривизна профиля применяется около 1 – 2% для возможности крейсерского полета с нулевым углом атаки, Сх – при этом минимален. Вместе с острым носиком типовой гоночный профиль выглядит так:


Такие профили плохо работают на взлетно-посадочных режимах, когда скорость полета невелика. Самолет с таким профилем имеет плохие штопорные характеристики и маленький критический угол атаки. Острый носик и почти плоская верхняя поверхность профиля легко провоцируют срыв обтекания. Поэтому сажать такие самолеты приходится на больших скоростях, что требует высокого мастерства пилота. Типовое значение чисел Re для этой группы профилей может легко превысить 1000000.

Пилотажный самолет

Для пилотажного самолета, наряду с другими требованиями, важна симметрия летных характеристик для прямого и перевернутого полета. Поэтому в их крыльях используются исключительно симметричные профили. Относительная толщина профиля, определяется исходя из предполагаемых чисел Re при выполнении фигур. Для классического пилотажа типовая толщина профиля – 12-15 %. Чтобы обеспечить качественное исполнение срывных фигур, таких как «штопор» и «штопорная бочка» носик профиля имеет достаточно малый радиус скругления.

Фан-флаи тоже предназначены для выполнения пилотажных фигур, но на гораздо меньших скоростях. Для них важен плавный, а не резкий срывной режим. Толщина профиля здесь до 20% и максимально большой радиус скругления носика профиля. Почему радиус скругления так влияет на срывные характеристики? Обратимся к картине обтекания толстого профиля с тупым носиком на малом и большом углах атаки


Хорошо видно, что точка разделения верхнего и нижнего пограничных слоев при изменении угла атаки перемещается по образующей носика. Поэтому переход к срыву потока при увеличении угла атаки здесь происходит позже и более плавно.

Для острого носика такое перемещение приводит к локальному резкому повышению скорости обтекания в месте большой крутизны носика. Такое повышение провоцирует более ранний отрыв пограничного слоя сразу от носика профиля. На графиках Cy=f(a) это выражается так:


Частный случай пилотажки – учебно-тренировочный самолет. Вообще то сочетание этих названий в одном самолете не совсем правильное. Для учебного самолета хорошо подходит плоско-выпуклый профиль ClarkY, с относительной толщиной 15-18%. Он обеспечивает при прочих равных условиях более низкую скорость сваливания на крыло, что для учебки очень важно. Однако, тренировать на нем навыки выполнения фигур пилотажа неудобно, поскольку он имеет ярко выраженную асимметрию характеристик. У тренировочной модели должен быть тот же профиль и та же нагрузка на крыло, что и у пилотажки, на которой пилот будет выступать на соревнованиях.

Бесхвостка

Помимо самолетов обычной схемы с оперением, бывают самолеты без оперения. Чаще всего киль все-таки сохраняется в том или ином виде, а вот стабилизатора нет вовсе. О достоинствах и недостатках такой аэродинамической схемы мы говорить здесь не будем. Балансировка и продольная устойчивость таких самолетов достигается за счет различных конструктивных ухищрений. Но, если крыло бесхвостки не стреловидное, а прямое, то единственный способ обеспечить балансировку и продольную устойчивость самолета – применить на крыле самобалансирующийся профиль:


Как видно, у таких профилей кривизна меняет вдоль хорды свой знак. В передней части профиля он выпуклый вверх, в задней – вниз. Такие профили еще называют S-образными, потому что средняя линия профиля напоминает латинскую букву S. Чем замечательны эти профили? У обычного несимметричного профиля при увеличении угла атаки точка приложения аэродинамической силы R смещается по хорде профиля вперед. При этом момент крыла, способствующий подъему носа самолета, увеличивается с ростом угла атаки. Крыло с таким профилем само по себе, без оперения устойчивым быть не может. У S-профилей наоборот. В диапазоне летных углов атаки увеличение этого угла приводит к смещению точки приложения аэродинамической силы по хорде профиля назад. В результате появляется момент на пикирование, стремящийся вернуть угол атаки к первоначальному значению.

К сожалению, в жизни не бывает, чтобы к бочке меда не добавили ложку дегтя. Так и здесь. Увесистая ложка дегтя: у S-профилей значительно более низкие предельные значения Су. Это заставляет конструктора самолета при равной с обычной аэродинамической схемой скорости полета делать у бесхвостки гораздо меньшую нагрузку на крыло, то есть значительно увеличивать площадь крыла при равном весе с самолетом обычной схемы.

Копия

Модели-копии в силу своего предназначения должны копировать все геометрические формы оригинала. В том числе и профиль крыла, иначе какая же это копия. Однако, число Re у копий намного ниже, чем у оригинала. Как будет летать такая модель?

При масштабном уменьшении и снижении чисел Re аэродинамическое качество снижается. Безмоторные копии летают хуже своих оригиналов. Для моделей вязкость воздуха играет гораздо большую роль. Однако, снижение летных свойств вовсе не катастрофично. От копий, как правило, и не требуется выдающихся аэродинамических характеристик. К тому же моторные модели, как правило, имеют большую энерговооруженность, чем копируемые оригиналы. В результате чего их летные свойства при точном копировании профиля крыла вполне удовлетворительны. Есть даже примеры обратной зависимости. На бипланах времен первой мировой войны широко использовались тонкие сильно изогнутые профили крыльев. Вовсе не потому, что они оптимальны для полетных чисел Re, а по конструктивно-технологическим причинам – их проще было делать для расчалочных крыльев деревянно-полотняной конструкции. При переходе к уменьшенным копиям, такой профиль оказывается более оптимален, чем у оригинала.

Для моделей современных сверхзвуковых самолетов приходится отступать от копийности профиля крыла, поскольку очень тонкие профили оригиналов с острым носиком определяют крайне неудовлетворительные срывные свойства у копий. Приходится мириться с неполной копийностью.

Радиопланер

Как было указано выше, оптимален тот или иной профиль крыла только при вполне определенных числах Re. Чем шире у модели диапазон полетных скоростей, тем труднее оптимизировать профиль ее крыла. Из всех видов крылатых моделей, один из самых больших диапазонов полетных скоростей у кроссовых радиопланеров F3B. В упражнении на продолжительность этому планеру выгодно лететь как можно медленнее, особенно в атермичную погоду. Скорость полета не превышает 7 – 8 м/сек. В упражнении на скорость планера разгоняются до скоростей в 40 – 45 м/сек. Для расширения диапазона чисел Re широко используют механизацию крыла. На кроссовых планерах вдоль всей задней кромки крыла размещена механизация, – на корневой половине консолей – закрылки, на концевой – элероны, смикшированные, как правило, с закрылками. В результате пилот имеет возможность в полете менять эффективную кривизну профиля крыла при помощи механизации, оптимизируя ее под требуемый режим полета. Используется как правило три, реже четыре режима предустановленные в процессе регулировки и переключаемые в полете пилотом. В стартовом режиме кривизна максимальна. Это делается для увеличения максимально возможного значения Су, которое определяет скорость затяжки на леере планера относительно буксировщика леера. В конечном итоге это определяет высоту старта при ограниченной правилами длине леера. Сх при этом значителен, а аэродинамическое качество невелико. Но это и не важно, поскольку энергия поступает извне – от буксировщика. Крутые пилоты используют при старте два предустановленных режима – в начале и в конце с разной кривизной профиля. На режиме парения механизация возвращает кривизну профиля к исходной, где его аэродинамическое качество максимально. Для скоростных режимов механизация слегка приподнимает заднюю кромку крыла, создавая минимальную эквивалентную кривизну профиля. Сх принимает свое наименьшее значение.

Сейчас наиболее распространены для кроссовых планеров профили серий MH, RG и HQ. Их разработчики при оптимизации геометрии профиля учитывают поведение аэродинамических характеристик при работе механизации крыла. Для справки можно привести профили 16 типов моделей финалистов чемпионата Мира по F3B 2001 года. На шести моделях стоял профиль MH-32, по две модели использовали профили HQW-3.0, RG-15 и SD7037. На остальных моделях, не занявших призовых мест, использовались оригинальные профили. Но на чемпионате Европы 2004 года MH-32 лишь у одного из спортсменов первой десятки. Призовые же места у SD7032 и RG-15.

Упрощенные профили

В некоторых случаях, чаще всего из конструктивных соображений, упрощают контуры профиля до примитива, когда его образующие – прямые линии. Иногда – они оправданы, в других случаях – нет. Для наглядности приведем по одному примеру таких случаев.

В последние пару лет появился новый класс авиамоделей – F3AI ( I здесь от Indoor – внутрикомнатный ) пилотаж внутри помещений. Самолеты этого класса имеют очень маленькую нагрузку на крыло и летают ни крайне низких числах Рейнольдса. Многие из них имеют крыло в виде тонкой прямой пластины из депрона с угольными передней и задней кромками. Такой профиль имеет малое значение максимального Су. Однако для крайне малых нагрузок на крыло это не важно. Срывные характеристики профиля тоже ужасны. Полет самолета больше напоминает порхание стрекозы, чем полет аиста. Тем не менее, такие самолеты показывают 3Dпилотаж весьма высокого уровня. Это – пример оправданного упрощения.

Некоторые начинающие в стремлении упростить изготовление крыла тренировочной модели сводят его профиль к примитивному треугольнику, где две вершины – острые передняя и задняя кромки, а третья – верхняя полка лонжерона. Нижняя полка лежит на плоской нижней поверхности крыла. Что может быть проще? Однако летать на таком крыле – неинтересно. Прошедшим летом, наблюдая за мучениями такого горе-конструктора, жалко становилось не его, а самолет, - на пять взлетов – две посадки. Остальные посадки – «кирпичом». К концу полетного дня от модели, и кстати – мотора, остались жалкие дрова. Такой профиль имеет низкое значение Су на предельных углах атаки и провоцирует к тому же лавинообразный срыв потока. Модель просто летит кубарем к земле. Это - пример неоправданного упрощения.

Резюме

Поскольку разнообразие видов крылатых моделей очень велико, мы не будем детально рассматривать особенности применяемых в них профилей крыла. Подведем итог в виде описания характера влияния геометрических параметров профиля на его аэродинамические свойства. Итак:

1.    Толщина профиля – влияет на величину лобового сопротивления. Увеличение толщины увеличивает сопротивление, в том числе на нулевой подъемной силе. Косвенно, увеличение толщины приводит к срыву обтекания на больших углах атаки, чем у тонких профилей. Увеличение толщины от малых значений до 12 – 15% увеличивает максимальное значение Су. Дальнейшее увеличение толщины его снижает. После 20% резко растет Сх.

2.    Радиус скругления носика профиля – связан с толщиной профиля. Влияет в первую очередь на поведение профиля на критических углах атаки. Косвенно влияет на лобовое сопротивление профиля. Большие значения радиуса приемлемы только на невысоких числах Re.

3.    Кривизна профиля – влияет на асимметрию свойств. Увеличение кривизны приводит к увеличению Су на сравнительно небольших числах Re. При росте Re кривизна профиля для сохранения приемлемых значений лобового сопротивления должна уменьшаться.

4.    Для обеспечения высокой эффективности профиля в большом диапазоне скоростей на крыле необходимо использовать механизацию, изменяющую в полете эффективную кривизну профиля для разных скоростей.

5.    Свойства профиля крыла влияют на требуемую для балансировки и продольной устойчивости самолета эффективность горизонтального оперения, что необходимо учитывать при проектировании модели в целом.

Характеристики несущего крыла зависят не только от примененного профиля, но и от ряда других его геометрических параметров. Их определение и характер влияния на аэродинамику крыла будет рассмотрен во второй части статьи.

Категория: Аэродинамика | Добавил: ПАНавиатор (29.04.2012) | Автор: Сергей Петрович E W
Просмотров: 3904 | Теги: характеристика профиля, профиль, аэродинамика, профиль для планера | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]